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In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) models are
important tools in combating late-stage attrition in the drug discovery process. This work shows
how ADMET models can be combined to tailor predictions depending on one’s needs. We
demonstrate how the judicious use of data and considered combination of predictions can
produce models that provide truly useful answers. This approach is illustrated with the
prediction of hERG channel blocking and cytochrome P450 2D6 inhibition, where combination
of two predictive models (with >80% of compounds correctly predicted) resulted in models with
even better predictive values (with >90% of compounds correctly predicted for those classes of
interest).

Introduction
Investigations into the causes of late-stage failures

in drug development, performed in the 1990s, revealed
that poor pharmacokinetics and toxicity were often
responsible.1,2 In an effort to reduce the time and
expense of the drug discovery process it soon became
apparent that early consideration of these areas was
essential.1-3 The need to know the absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET)
properties of drug candidates has propelled the develop-
ment of numerous high-throughput screening methods.
These screens provide data on synthesized molecules,
but there is an increasing need for robust and accurate
computational tools to aid in the design of new com-
pounds and libraries with desirable ADMET profiles.
Prioritization of hit and lead candidates can also be
influenced by the prediction of their ADMET proper-
ties.4,5 Therefore the drive toward the reduction of
attrition is one in which in silico modeling can have a
major impact.

The choice of how to build an ADMET model varies
depending on the case and the circumstances - no one
technique is consistently better than all others. Ir-
respective of the method used, the quality of the
predictions must be assessed. There are a several ways
in which this can be done,6 but ultimately the model
must be useful in the drug discovery context. Therefore,
it is essential to determine how the model will be applied
before proceeding.7 The data source and validity are all
important.2 Curation of data according to quality and
relevance will enhance the probability of obtaining good
models. For example, when training models on high-
quality, in-house data one can be confident that the
predictions will be applicable to in-house chemistry.
Once models are obtained, the predictions (from two or
more models) can be combined to further suit the
application.8-10

The data used to build ADMET models often come
from high throughput in vitro screens. These data are
effectively categorical (e.g. YES/NO, Positive/Negative)
in nature, so classical QSAR (quantitative structure
activity relationship) methodologies, predicting activity
values, are rarely suitable. However, there are numer-
ous techniques and descriptors available for modeling
categorical data that have been shown to be useful for
ADMET modeling.6,7,11,12 In this work we report models
built using both Neural Networks and Bayesian statis-
tics, but the processes described can be applied to
alternative modeling methods. We examine the results
provided by both methods and demonstrate how com-
bining the respective models can enhance results. In
addition, we show how the resulting predictions can be
tailored to suit the individual project or task require-
ments. The approach is illustrated with two significant
targets for ADMET prediction: toxicity caused by
blocking of the human ether-a-go-go related gene (hERG)
K+ channels, and inhibition of cytochrome P450 2D6
(CYP2D6).

Block of hERG K+ channels by a variety of drugs has
been linked to acquired long QT syndrome, a disorder
of cardiac repolarization that predisposes to lethal
arrhythmias. This is because hERG channels mediate
the rapidly activating delayed rectifier K current (IKr)
in the heart.13 A number of structurally diverse com-
pounds have been removed from the market due to
drug-induced long QT.14 Therefore identification of
potential hERG channel blockers early in the drug
discovery process is desirable. An assay that measures
displacement of dofetilide from hERG binding can be
used to determine the likelihood of a potential interac-
tion with the hERG channel.15

Cytochrome P4502D6 is a polymorphic member of the
P450 super-family.16 It is absent in 5-9% of the
Caucasian population, resulting in diminished metabo-
lism of numerous drugs. When one compound inhibits
CYP2D6, the subsequent decrease of metabolism of
another compound can lead to unexpected drug-drug
interactions.17 This is due to accumulation of the latter
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compound as it is not being metabolized. Therefore,
inhibition of CYP2D6 is an unwanted feature in a drug
candidate. Fluorescence screens can be used to deter-
mine the degree of CYP2D6 inhibition.18

Results and Discussion

Dofetilide Displacement. A Neural Network and
a Bayesian model for the assay were constructed as
detailed in Materials and Methods. All the results and
statistics presented in this section relate to the activity
predictions for the validation set of 11996 compounds
(5000 positive, 6996 negative). The statistical measures
and terminologies are defined in Materials and Meth-
ods. The results for both individual models are compa-
rable, with the Neural Network being slightly better
(Table 1). They both show a high overall concordance
and predict a greater proportion of positives accurately
than negatives.

Although the Neural Network and Bayesian models
have similar prediction accuracies, they do not predict
all the same compounds correctly. There is a large
degree of overlap between both predictions, but there
are compounds that are accurately classified by one
method and not the other. This difference enables us to
combine predictions from both models in each of three
ways. The models can be combined such that:

1. A positive prediction is returned if either model
predicts a compound to be positive. This is the “recover
+ve” model as it tends to return more true positives.

2. A negative prediction is returned if either model
predicts a compound to be negative. This is the “recover
-ve” model as it tends to return more true negatives.

3. A prediction is only given if both models agree. This
is the “consensus model”. There are two sets of statistics
that can be found for this model: the first pertaining
to the accuracy of prediction of all the molecules in the
validation set (consensus-overall); the second reflecting
the accuracy of prediction of the set of compounds for
which a classification is actually made i.e. all compounds
for which both individual models agree (consensus-
predicted).

The statistics for all of the above combinations are
shown in Table 1 and depicted in Figure 1.

This results in a set of models that recover different
sets of compounds. The recover +ve model greatly
increases the number of positive compounds that are
retrieved from the validation set. Only 8% of mole-
cules that displace dofetilide are not found. However,
this model also increases the false positive rate (by
5-8%), and 25% of negative compounds are misclassi-
fied. This model is useful when the aim is to discard
any compound that blocks the hERG channel, as few
positive compounds are progressed in the drug discovery
process.

The recover -ve combination only classifies a com-
pound as positive if both models agree. This cuts down
the false positive rate (by 6-9%) but does mean that
21% of potential hERG binders are missed. This model
is useful when the aim is not to remove potentially valu-
able compounds. The remaining molecules cover the
widest chemical space that will not block the hERG
channel.

The consensus model (consensus-overall) shows the
lowest concordance of all the models (76%). However,
when a prediction is made, 91% of positive compounds
and 87% of negative compounds are accurately classified
(Table 1). This consensus model provides significantly
increased confidence in prediction, but 14% of the
molecules have unassigned activities (as conflicting
predictions have been made by the two individual
models). Thus false positive and false negative rates are
reduced compared to the individual Neural Network and
Bayesian results. As a measure of the goodness of the
model, the Kappa value of 0.62 for the consensus-overall
model is lower than all the other models, but a Kappa
of 0.77 for the compounds that were actually predicted

Table 1. Model Statistics for Dofetilide Displacement Assay
Prediction

model
sensitivity,

%
specificity,

%
concordance,

% Kappa

Neural Network 86 83 85 0.69
Bayesian 84 80 82 0.63
recover +ve 92 75 82 0.64
recover -ve 79 89 85 0.68
consensus-overall 79 75 76 0.62
consensus-predicteda 91 87 89 0.77

a 87% of positives and 86% of negatives predicted.

Figure 1. Statistics for dofetilide displacement assay prediction models.
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is significantly higher. The consensus can be used in
isolation for increased accuracy in prediction or as an
indication of confidence in classification alongside the
other, previously described, models.

CYP2D6 Inhibition. Two Neural Networks and one
Bayesian model for the assay were constructed as
detailed in Materials and Methods. All the results and
statistics presented in this section relate to the valida-
tion set of 600 compounds (106 positive, 494 negative).

The use of five nodes for the Neural Network gener-
ates a model (Neural_5) that has a high concordance of
86% but predicts the negative compounds significantly
better than the positive ones (Table 2). In contrast,
Neural_3 and the Bayesian model classify the positive
compounds with greater than 90% accuracy and produce
few false negatives. The reduced concordance is due to
a decreased specificity and the balance of the validation
set: it contains nearly five times more negative than
positive compounds.

As with the dofetilide assay models, there is a large
degree of overlap between the predictions made by all
models, but there are compounds that are accurately
classified by one method and not the other. Hence, they
can be combined to create a more useful model for
CYP2D6 inhibition. As we have three predictions, we
can have all the combinations shown in the previous
section for any two of the three models (e.g. recover +ve
models made from the combinations of Neural_3 and

Neural_5 or Neural_3 and Bayesian or Neural_5 and
Bayesian).

In addition these combinations can be made using all
three models (e.g. recover -ve model that predicts a
molecule as negative if any one of three models classifies
a compound as negative). As there are three different
predictions we can also construct a “voting model”. In
this scenario, a compound is given the value assigned
to it by the majority of the models. All the above com-
binations were assessed, and the best results for each
category are shown in Table 2 and Figure 2. The statis-
tics for the voting model are not displayed in this paper,
as it shows no discernible advantage over any of the
other featured models. The recover +ve and the con-
sensus models result from the combination of Neural_3
and the Bayesian classifications and the recover -ve is
derived from the Neural_5 and the Bayesian models.

The recover +ve model has a low concordance of
77%, but it correctly classifies 95% of CYP2D6 inhibi-
tors. However, the false positives are significant and
only 74% of negative compounds are correctly classified.
The ability of the recover +ve model to identify almost
all the inhibitors of CYP2D6 makes this extremely
powerful.

The recover -ve model correctly assigns 90% of
negative compounds and produces a 10% false positive
rate. This is better than all the individual models and
is useful when wishing to identify definite inhibitors.

The consensus model is constructed from the Neu-
ral_3 and Bayesian models. It has a worse concordance
than all other models and fails to predict 13% of
positives and 25% of negatives. However, within the
limits of the consensus model, it provides exceedingly
accurate predictions. Every CYP2D6 inhibitor is cor-
rectly predicted, and only 5/368 noninhibitors are mis-
classified (Table 2). This model gives predictions in
which we can have extremely high confidence (but only
when a classification is made). It can also be used as a
stand-alone predictor or in conjunction with another
CYP2D6 model to provide confidence in prediction.

Table 2. Selected Model Statistics for CYP2D6 Inhibition

model
sensitivity,

%
specificity,

%
concordance,

% Kappa

Neural_5 79 87 86 0.58
Neural_3 91 80 82 0.53
Bayesian 92 78 80 0.51
recover +vea 95 73 77 0.47
recover -veb 77 90 88 0.62
consensus-overalla 87 74 76 0.60
consensus-predicteda,c 100 99 99 0.97

a Model combines Neural_3 and Bayesian predictions. b Model
combines Neural_5 and Bayesian predictions. c 87% of positives
and 75% of negatives predicted.

Figure 2. Statistics for selected CYP2D6 inhibition prediction models.
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Conclusions

We show that there are several ways in which
ADMET models can be used to tailor predictions de-
pending on one’s needs, i.e. give the best overall models,
or focus on recovering the positive or negative predic-
tions. The selection of which actual model, or combina-
tion of models, should be used will be influenced by the
nature of the project goals and the quality of the
available data. In the absence of a completely accurate
classification method, the judicious use of data and
considered combination of predictions, models that
provide truly useful answers can be produced. In the
two examples shown here, combination of two predictive
models (>80% of compounds correctly predicted) re-
sulted in models with even better predictive values.
These combined models allow the correct prediction of
>90% of compounds for those classes of interest, either
positive or negative.

Materials and Methods

Dofetilide Displacement. In-house data15 on 58963 com-
pounds were split randomly 80/20 (46967/11996) to obtain
training and validation sets, respectively. The training set
comprised of 20200 compounds that displaced dofetilide
and 26767 that did not.19 The values used to determine classi-
fication into positive or negative were decided in consulta-
tion with project biologists. We refer to the former as positives
and the latter as negatives. The validation set contained the
same ratio of positive to negative molecules as the training
set.

CYP2D6 Inhibition. IC50 data18 from 2410 compounds
were obtained from both in-house and CEREP (BioPrint)
measurements and were split randomly 75/25 (1810/600)
for training and validation sets. The training set comprised
of 431 compounds that inhibit CYP2D6 and 1979 that do
not.20 We refer to the former as positives and the latter as
negatives. The validation set contained the same ratio of
positive to negative molecules as the training set. The values
used to determine classification into positive or negative
were decided in consultation with project drug metabolism
experts.

Statistics are shown for the validation sets throughout this
work. For each data set, models were constructed using the
Neural Network module in Cerius2 21 and the Bayesian model-
ing module in Pipeline Pilot.22

The back-propagation Neural Networks as implemented in
Cerius2 allow the mixing of numerical and categorical descrip-
tors as well as 2-D fingerprints. In this instance, the E-state
keys23 and Barnard 4096-bit fingerprints24 were used as
descriptors for each molecule. The model building and predic-
tion were performed through the use of the binary data files
(BDF), as this permitted the easy manipulation of 46967
compounds. The number of nodes in the hidden layer was
varied between 1 and 10, and the most useful models were
chosen: one for hERG (five nodes) and two for CYP2D6 (three
nodes and five nodes, referred to as Neural_3 and Neural_5,
respectively). Additional alteration of parameters did not
improve the models, so all the remaining default settings were
used. During model generation, 10% of the training set is
reserved as a test set. The minimization method uses this test
set to decide when it would be prudent to stop training and
also which values of the weights visited during training will
be final. This measure attempts to prevent overtraining of the
Neural Network. The generation of the hERG model took 1
day on a 600 MHz SGI Octane while the construction of the
CYP2D6 models took a few minutes. Subsequent predictions
using these models, including descriptor calculation, proceed
at about 40 molecules per second.

The Bayesian models were constructed using the modified
naı̈ve Bayesian statistics implemented in Pipeline Pilot. Model

building was carried out using the datasets described above
and using FCFP_6 (functional class fingerprints, where atoms
are abstracted to the role they play in the molecule), AlogP,
Molecular Weight, and the counts of hydrogen bond acceptors
and donors. A more extensive description of this Bayesian
implementation is available elsewhere.25 Model construction
took several minutes on a dual-CPU Windows 2000 server (2.4
GHz). Predictions using these models have a throughput of
approximately 25 molecules per second.

We evaluated each of the models using the following
statistical measures:

1. Sensitivity: the percent of positives correctly predicted
positive.

2. Specificity: the percent of negatives correctly predicted
negative.

3. Concordance: the percent of compounds correctly classi-
fied.

4. Kappa: a weighted kappa statistic.26,27 When Kappa
equals 0, the model is equivalent to that expected by chance.
When it equals 1, there is perfect agreement between actual
and predicted values. The stronger this agreement, the higher
the value of Kappa.

In addition, the figures illustrate the proportion of false
positives (negative compounds classified as positive) and the
proportion of false negatives (positive compounds classified as
negatives) returned by each model.
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